22Na+ fluxes in thymic lymphocytes. II. Amiloride-sensitive Na+/H+ exchange pathway; reversibility of transport and asymmetry of the modifier site
نویسندگان
چکیده
22Na+ flux and cytoplasmic pH (pHi) determinations were used to study the reversibility, symmetry, and mechanism of activation of the Na+/H+ exchange system in rat thymic lymphocytes. In acid-loaded cells, the antiport can be detected as an Na+-induced, amiloride-sensitive alkalinization. At pHi greater than or equal to 7.0, amiloride-sensitive net H+ fluxes are not detectable. To investigate whether at this pHi the transporter is operative in a different mode, e.g., Na+/Na+ exchange, 22Na+ uptake was measured as a function of pHi. The results indicate that the antiport is relatively inactive at pHi greater than or equal to 7.0. Comparison of the rates of H+ efflux (or equivalent OH- uptake) and Na+ uptake indicate that Na+/Na+ countertransport through this system is negligible at all values of pHi and that the Na+:H+ stoichiometry is 1:1. Measurements of pHi in Na+-loaded cells suspended in Na+-free medium revealed an amiloride-sensitive cytoplasmic acidification, which is indicative of exchange of internal Na+ for external H+. The symmetry of the system was analyzed by measuring the effect of extracellular pH (pHo) on Na+ efflux. Unlike cytoplasmic acidification, lowering pHo failed to activate the antiport. The results indicate that the amiloride-sensitive Na+/H+ exchanger is reversible but asymmetric. The system is virtually inactive at pHi greater than or equal to 7.0 but can be activated by protonation of a modifier site on the cytoplasmic surface. Activation can also occur by depletion of cellular Na+. It is proposed that Na+ may also interact with the modifier site, stabilizing the unprotonated (inactive) form.
منابع مشابه
22Na+ fluxes in thymic lymphocytes. I. Na+/Na+ and Na+/H+ exchange through an amiloride-insensitive pathway
The Na+ transport pathways of normal rat thymocytes were investigated. Na+ conductance was found to be lower than K+ conductance, which is consistent with reported values of membrane potential. In contrast, the isotopically measured Na+ permeability was greater than 10-fold higher than that of K+, which indicates that most of the flux is electroneutral. Cotransport with Cl- (or K+ and Cl-) and ...
متن کاملThe mechanism of insulin stimulation of (Na+,K+)-ATPase transport activity in muscle.
Since the mechanism underlying the insulin stimulation of (Na+,K+)-ATPase transport activity observed in multiple tissues has remained undetermined, we have examined (Na+,K+)-ATPase transport activity (ouabain-sensitive 86Rb+ uptake) and Na+/H+ exchange transport (amiloride-sensitive 22Na+ influx) in differentiated BC3H-1 cultured myocytes as a model of insulin action in muscle. The active upta...
متن کاملSodium uptake across basolateral membrane of rat distal colon. Evidence for Na-H exchange and Na-anion cotransport.
This study sought to characterize the mechanism of Na transport across basolateral membrane vesicles of rat distal colon. Both an outward proton gradient and an inward bicarbonate gradient stimulated 22Na uptake. Proton gradient-stimulated 22Na uptake was activated severalfold by the additional presence of an inward bicarbonate gradient, and bicarbonate gradient-stimulated 22Na uptake was signi...
متن کاملTransient state kinetic evidence for an oligomer in the mechanism of Na+-H+ exchange.
Pre-steady-state kinetic measurements of 22Na+ uptake by the amiloride-sensitive Na+-H+ exchanger in renal brush border membrane vesicles (BBMV) were performed at 0 degrees C to characterize the intermediate reactions of the exchange cycle. At 1 mM Na+, the initial time course of Na+ uptake was resolved into three separate components: (i) a lag phase, (ii) an exponential or "burst" phase, and (...
متن کاملAn amiloride-sensitive, volume-dependent Na+ transport across the lamprey (Lampetra fluviatilis) erythrocyte membrane.
Na+ transport across the lamprey erythrocyte membrane was examined using 22Na as a tracer. Both Na+ influx and Na+ effux exhibit a wide variability among different lampreys due to amiloride-sensitive components. Addition of 1 mmol/l amiloride to incubation media resulted in a decrease of the Na+ influx from 8.4 +/- 0.9 to 5.5 +/- 0.3 mmol/l cells/h (n = 18, P < 0.001), and of the rate coefficie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of General Physiology
دوره 84 شماره
صفحات -
تاریخ انتشار 1984